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SymplecticIntegrators (SIs)
Formally the solution of the Hamilton equations of motion can be written 
as:

where     is the full coordinate vector and LH the Poisson operator:
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If the Hamiltonian H can be split into two integrable parts as H=A+B, a 
symplectic scheme for integrating the equations of motion from time t to 
time t+τ consists of approximating the operator           byHτLe

for appropriate values of constants ci, di. This is an integrator of order n.

So the dynamics over an integration time step τ is described by 
a series of successive acts of Hamiltonians A and B. 
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SymplecticIntegrator SABA 2C
The operator        can be approximated by the symplectic integrator 
[Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]:
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The integrator has onlysmall positive steps and its error is of order 2.

In the case where A is quadratic in the momenta and B depends only on 
the positionsthe method can be improved by introducing a corrector C, 
having a small negative step:
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Thus the full integrator scheme becomes: SABAC2 = C (SABA2) C and its
error is of order 4.
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Tangent Map (TM) Method

The Hénon-Heiles system can be split as:

Any symplectic integration scheme used for solving the Hamilton equations of motion,
which involves the act of Hamiltonians A and B, can be extended in order to integrate
simultaneously the variational equations[Ch.S. & Gerlach, PRE (2010) – Gerlach &
Ch.S., Discr. Cont. Dyn. Sys. (2011) – Gerlach et al., IJBC (2012)].



The Klein – Gordon (KG) model
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000.

Parameters: W and the total energy E.

The discrete nonlinear Schrödinger (DNLS) equation
We also consider the system:
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Conserved quantities: The energy and the norm              of the wave packet.
2
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Ansatz: ul=Al exp(iωt). Normal modes (NMs) Aν,l - Eigenvalue problem: 
λAl = εlAl - (Al+1 + Al-1) with ɶ

2
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Distribution characterization
We consider normalizedenergy distributions in normal mode (NM) space

of the νth NM.
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Different spreading regimes



Different spreading regimes

Flach, Krimer, Ch.S., PRL (2009)
Ch.S., Krimer, Komineas, Flach, PRE (2009)
Ch.S., Flach, PRE (2010)
Laptyeva, Bodyfelt, Krimer, Ch.S., Flach , EPL (2010) 
Bodyfelt, Laptyeva, Ch.S., Krimer, Flach S., PRE (2011)

DNLS W=4, β= 0.1,1, 4.5 KG W = 4, E = 0.05,0.4,1.5

slope 
1/3

slope 
1/3

Characteristics of wave 
packet spreading:

m2~tα

with α=1/3 or α=1/2, for 
particular chaotic regimes.

Single site excitations α=1/3 



KG: Lyapunov Exponents

Individual runs
Linear case
E=0.4, W=4

Average over 50 realizations

Single site excitation E=0.4, 
W=4

Block excitation (21 sites) 
E=0.21, W=4

Block excitation (37 sites) 
E=0.37, W=3

S.Ch. et al. PRL (2013)
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The KG model
We apply the SABAC2 integrator scheme to the KG Hamiltonian by using 
the splitting:

with a corrector term which corresponds to the Hamiltonian function:

{ }{ } ( ) ( ) .
 + −  

∑C = ɶ

2N
2

l l l l -1 l+1 l
l=1

1
A,B ,B = u ε u u + u - 2u

W

( ) 
 
 

∑
ɶ 22 4l

l

2

l l+

N

K
l=

l

1
1 l

ε 1 1
u + u + u - u

2 4
H

2W
+

p
2

=

A B



The DNLS model
How can we use Symplectic Integrators for the DNLS model?
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Evaluation of the C(τ) matrix
The equations of motion for the Hamiltonian B can be written as:

with

Then the matrix C(τ) is given by

The evaluation of the elements of matrices cos(Aτ) and sin(Aτ) can be
obtained through the determination of the eigenvalues and eigenvectors of
matrix A itself (Gerlach, Meichsner, Ch.S., 2016, Eur. Phys. J. Sp. Top).



DNLS model: 2 part split SIs
Order 2: Leap-frog (3 steps)

SABA2 (5 steps)

Order 4: Yoshida, 1990, Phys. Lett. A (7 steps)

ABA864 [Blanes et al., 2013,  App. Num. Math.] (15 steps)

Order 6: Using the composition method refereed as ‘solution A’ in [Yoshida,
1990, Phys. Lett. A] we construct the 6th order symplectic
integrator S6 having 29 steps

where S2 is the SABA2 integrator, while the values of w0, w1, w2,
w3 can be found in [Yoshida, 1990, Phys. Lett. A]



2 part split SIs: Numerical results
LF τ=0.0025

SABA2 τ=0.01
S4 τ=0.05

ABA864 τ=0.175
S6 τ=0.25

Er: relative energy 
error
Sr: relative norm error
Tc: CPU time (sec)

Gerlach, Meichsner, 
Ch.S., 2016, Eur. Phys. 
J. Sp. Top. 

N=1000, W=4,β=0.72, HD=-28.5



DNLS model: 3 part split SIs
Symplectic Integrators produced by Successive Splits (SS) 
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DNLS model: 3 part split SIs

Three part split symplectic integrator of order 2, with 5 
steps: ABC2

A B B A
C

τ τ τ τ
L L L L

τL2 2 2 2 2ABC =  e  e  e  e  e

This low order integrator has already been used by e.g. Chambers, MNRAS 
(1999) – Goździewski et al., MNRAS (2008).
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DNLS model: 3 part split SIs
Order 4: 

Order 6: Using the composition method proposed in [Sofroniou & Spaletta,
2005, Optim. Methods Softw.] we construct the 6th order
symplectic integratorABC6

[SS]with 45 steps.

In this way, starting with the 2nd order integrators SS2 and ABC2 we
construct the 4th order integrators:

SS4 with 37 steps              ABC4
[Y]with 13 steps

Starting from any 2nd order symplectic integrator S2nd, we can
construct a 4th order integrator S4th using the composition method
proposed by Yoshida [Phys. Lett. A (1990)]:

1/3
4th 2nd 2nd 2nd

1 0 1 0 11/3 1/3

2 1
S (τ) = S (x τ)×S (x τ)×S (x τ),      x = - ,       x =

2 - 2 2 - 2

Using the ABAH864 integrator [Blanes et al., 2013, App. Num.
Math.], where the B part is integrated by the SABA2 scheme, we
construct the 4th order integrator: SS4

864 integrator with 49 steps.



3 part split SIs: Numerical results
ABC4

[Y] τ=0.05
SS4 τ=0.05

SS4
864τ=0.125

ABC6
[SS]  τ=0.225

Er: relative energy 
error
Sr: relative norm error
Tc: CPU time (sec)

Gerlach, Meichsner, 
Ch.S., 2016, Eur. Phys. 
J. Sp. Top. 

N=1000, W=4,β=0.72, HD=-28.5



2 and 3 part split SIs: 
Comparing their efficiency

Best 2 part split: ABA864 τ=0.125
Best 3 part split: ABC6

[SS] τ=0.225

N = number of sites,  t = 104

Er: relative energy error, Tc: CPU time (sec)



Summary
• We presented several efficient symplectic integration methods

suitable for the integration of the DNLS model, which are
based on2 and 3 part split of the Hamiltonian.

� 2 part split methods preserve better the second integralof the
system(i.e. the norm)

� For small lattices (N d 70) 2 part split methods are
computationally more efficient, while for larger lattice 3 part
split method should be used.
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